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Abstract

The report summarizes the mathematical algorithm and the computed results devel-
oped for the prediction of a balloon’s position uncertainty as a function of time from a given
statistical wind velocity profile. The predicted results were used for mission plannings in

support of a recent ship launch balloon observation experiment.
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1. Problem Description and Formulation

An observation balloon equipped with appropriate instrumentation package is to be
launched from a ship. At the termination of the observation period (normally less than two
hours), the instrumentation package will be released from the balloon via remote control
and subsequently recovered. Throughout the observation experiment, the exact location
and altitudes of the balloon will be tracked. However, for planning purposes, it is required
to estimate the balloon’s flight trajectory such that a launch position sufficiently far in the
upwind direction can be determined. Subsequently when the instrument package is to be
released, it will impact at sea rather than on land. Furthermore since the recovery of the
instrumentation package is to be carried out by a helicopter stationed at a nearby island,
it is desired to have the release point located as near as possible to the helicopter station.

This situation is depicted in Figure 1.

Prediction of a balloon’s flight is complicated by the wind motion uncertainty; its
velocity changes in both magnitude and direction as a function of altitudes. Figure 2
shows a typical wind velocity profile. Its statistical nature was derived from many repeated
meterological observations. Assuming that the balloon follows the wind motion, one can
then derive a relative simple prediction algorithm. This result will be useful for the purpose

of determining the balloon’s launch position.
Mathematical Formulation

Figure 3 depicts the kinematic of the balloon motion and the orientation of the refer-

ence coordinates. Referring to Figure 4, the following notations were used.

An z, y, z rectangular coordinate system whose origin coincides with the launch point
is defined as follows: = - points east, y - points north, and z — points up. Furthermore,
the wind velocity is denoted by w, the horizontal component, u, the vertical component,
and 8 it s direction with respect to (w.r.t) the z axis (i.e., easterly direction). For a wind
arrival direction v, which is measured clockwise w.r.t north, (a convention used in the

meterological database), 8 and i are related by

=1 - 270° . (1)
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Figure 1. Geometry for balloon experiement and instrumentation package recovery.
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Figure 3. Balloon kinematrics and coordinate references.



Figure 4a. Balloon altitudes expressed as a function of X, Y, and Z.

Figure 4b. Balloon altitudes expressed as a function of R and Z.



Defining Vg as the balloon ascent speed in zero vertical wind speed conditions then the

balloon velocity at any time after launch can be described by the differential equations'

z(t) = w(h) cos 8(h)
y(t) = w(h) sin 8(h)

z2(t) = V(h) + u(h) , (2)

where w, 1, and 6 are conveniently modeled as independent, nonstationary, white, Gaus-

sian processes with probability density function (pdf) given by:

w = N(w(h), ¢2)

8 = N(8(h), d3)

u = N(@(h), a2) | (3)

where ( ) and 0'(2 ) represent respectively the mean and variance of a Gaussian process N ( ).
Note that the mean and variance are functions of the balloon’s instantaneous height, h,
which in turn is implicitly a function of time. From Figure 4 it can be shown that the

instantaneous height of the balloon is related to the z y z coordinates by the relation

h(z,y,z):Re{\/(1+é>2+(é)2+(%)2_1} , (4)

where Re is the earth’s radius. Defining a columnwise state vector x = [z, y, z}T, and a
columnwise uncertainty wind parameter vector a = |w, u, 8], Equations (2), (3), and (4)

can be combined to yield a state equation of the form

x(t) = f(x(t), a(t), t) (5)

where f( ) is a vector function, and the wind parameter vector is a function of the state

x through Equation (4). Thus the mathematical problem is to solve the stochastic vector

7



differential Equation (5) with initial condition x(0) = x¢ (assume known) and the p.d.f.

of a is given by:

a=N(m(a) , cov(a)) , (6)

where the mean and covariance of a are given by

m(a) = [w(h), ©(h), 6(h)T (7)
o’i,(h) 0 0
cov(a) = 0 a2(h) 0 (8)
0 0 oi(h)

Equation (5) is difficult to solve in general* because (1) it is highly nonlinear and coupled

via Equation (4), and (2) uncertainty parameters are functions of the state.

To a first-order approximation, the following assumptions can be made, which sim-

plify the structure of Equation (5) significantly and subsequently yield a simple prediction
algorithm.

The first assumption is that the horizontal flight range of the balloon from the launch

point is small compared to the earth’s radius, thus we have

E<l o, (9)
L<1 . (10)

So Equation (4) can be written as

{1

h(z)

i Applied Optimal Estimation, M.I.T. Press, chapter 6.

. (11)
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The second assumption is that the vertical component of the wind velocity u(h) is
negligible compared to Vg, the balloon ascent speed. The third assumption is that the
balloon ascent speed to a first-order is essentially independent of altitudes. Using the above

three assumptions, the balloon’s flight Equation (2) becomes

#(1) = w(z) cos 8(z) (12)
§(t) = w(z) sinb(z) (13)
Ht)=Vs . (14)

Now Equation (14) is decoupled from Equations (12) and (13) and that we have removed
the state dependency of the uncertain wind parameter by integrating the z(t) equation
independently. Note that the z(¢) and y() components are still coupled through the wind
parameters. Since z(t) is no longer a random parameter, we seek the mean and covariance

propagation of the z(t) and y(¢) components.



2. Computation of Balloon’s Mean Trajectory

Integrating Equations (12) to (14) yield

z(t) = /0 w(z) cos B(z)dr (15)
t

y(1) = /0 w(z) sin 6(z)dr (16)

z(t):/; Vpdr | (17)

where the only random components are the z(¢) and y(t) due to the wind uncertainty
parameters. The mean values of z(¢) and y(t) are obtained by taking the expected value
of Equations (15) and (16), and yields

t
z(t) = / E{w(z) cos 8(z)}dr

0
¢

:/ E{w(z)} E{cos 6(z)}dr
0
t -

:/ w(z) cos B(z)dr (18)
0

since w(z) and #(z) are independent processes, and the relation

E{cos(z)} = cos 8(z) |, (19)

1s obtained from the first-order expansion of cos 6(z) about the current value of z(1).

Similar manipulation of Equation (16) yields:

14
g(t):fo w(z) sin (z)dr . (20)
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Thus the balloon’s mean trajectory is obtained by integrating simultaneously Equations (17),
(18), and (20) with a given initial condition of z(0), y(0), and z(0).

11



3. Computation of Balloon’s Position Uncertainty

It is desired to obtain balloon’s position uncertainty due to the random wind fluctua-
P y

tion. This can be done by computing the covariance propagation of z and y components.

Toward this goal, we define the state vectors:

RED

and the wind parameter vector

Now linearizing x(t) about x(t), ¥, and 6; i.e., the mean trajectory yields:

t a |
5x(t):/0 Fﬁ‘ Sadr

‘a=a

where it 1s defined

8x(1) = x(t) — %(1)

fa=a—a

and

of
Oa

a=i sin § wcosé

cos - w sin 8}

F

Ho>

¥

12
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(22)

(23)

(24)

(24)
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where §( ) is the Dirac-delta function. Therefore the covariance of §x(t) is given by

t 1
- / / FQ(my, =)FT dry dmy (28)
0 0

where we have defined

Q(m1, ) = E{Sa(rl)5aT(‘rg)}

02‘025(7'1~7'2) 0
0 0’5 5(7’] ~T2)

(29)

Now substituting F in Equation (27 ) and Q in Equation (29) into (28) and simplifying

yields the desired expressions for the covariance propagation uncertainty:

t
2 _ / [(cos 6)? 0% + (i sin 8)* 03] dr . (30)

0

t
3 = /(: [(sin 9)2 ol + (b cos 6)* 03] dr (30)

and

t

gzy = /é {(sin 8 cos B)ol - (w sin 6 cos 9)03] dr . (32)
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4. Computation of Balloon’s CEP

Given a balloon’s uncertainty covariance, one can compute its CEP, or circular error
probability. CEP is the radius of the circle where there exists a 50% probability that the
balloon is within the circle. Given a covariance matrix P, one could compute its eigenvalues

from computing the determinant of P — Al, or

Det|P - M|=0 . (33)

In this case it resulted in a quadratic equation

A= (k4 crz)/\ + ot 05 - agy =0 , (34)
which yields eigenvalues
b Vb —4c
M=+ — 35
1= 5 + 5 (35)
b Vb dc
dAp= = - — —— 36
S L (36)
where
b=ol+ a:“/ (37)
c= azag a:y (38)

It can be shown* that CEP is related to the eigenvalues through the equation

CEP = .59 (\/X{+ V) (39)

* James Constant,“Fundamentals of Strategic Weapons Offense and Defense Systems,”
Martinus Nijhoff Publisher, 1981, pp. 201.
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5. Description of Results

The predicted mean and covariance of the balloon’s flight path were computed using
Equations (15) to (17), and (30) to (32) respectively. The CEP is also computed using
Equations (35) to (39). For the wind velocity profile shown in Figure 2, the resulting CEP
is given in Figure 5. Note that the wind speeds increase linearly as a function of altitudes
and peaked at about 40,000 feet with a maximum speed of 60 knots. Above this altitude,

wind speeds decrease linearly to zero.

Assuming a constant ascent rate of 800 feet/minute for the balloon, it will reach the
maximum wind speed altitude in about 50 minutes. Note that the CEP curve shown in
Figure 5 depicts similar characteristics, since CEP, in effect, is related to the integral of
wind speed. During the second hour of flight, the balloon slows down substantially due
to reduction in wind speed and buoyancy. The balloon reaches its maximum altitude of

80,000 feet in about two hours.

Figure 6 shows the balloon position projected on the earth surface for the wind velocity
profile given in Figure 2. The solid curve is the mean trajectory. CEPs are superimposed
on the mean trajectory at 10 minute intervals. It can be seen that at the end of a two-hour

flight, the balloon’s CEP could be as large as 5 nautical miles.

Weather data changes from month to month. For completeness a full set of predictions
was generated for weather data gathered at or around San Nicholas Island, the planned

location for the observation experiment. These data were included in Appendix A.

15



8. Summary and Conclusions

Based on simplified assumptions, a first-order prediction algorithm was developed to
estimate the balloon flight path. The estimates were given in terms of the mean (the
average location) and the CEP (the 50% probability circle) as a function of time. The
prediction algorithm was implemented and used to generate predictions for weather data

from San Nicholas Island from January to December.

16
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Appendix A

Balloon Position Prediction Near San Nicholas Island

from January to December
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Altitude in feet, wind speed in knots, wind direction in degrees clockwise from North, weather data
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Altitude in feet, wind speed in knots, wind direction in degrees clockwise from North, weather data

from San Nicholas Island typical for the month of October.
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Figure 28. Altitude in feet, wind speed in knots, wind direction in degrees clockwise from North, weather data
from San Nicholas Island typical for the month of November.
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Figure 30. Altitude in feet, wind speed in knots, wind direction in degrees clockwise from North, weather data
from San Nicholas Island typical for the month of December.






